请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

戴蔚

首页 >> 师资队伍 >> 按系别查看 >> 基础数学系 >> 戴蔚 >> 正文

戴蔚

发布日期:2023-03-06    点击🚴🏻‍♂️:


    名⏯🏓:戴蔚

    称:教授(博导)

所属系别:基础数学系

学科专业♾:非线性泛函分析、偏微分方程、调和分析

办公地点:沙河校区主楼E504-4

办公电话:暂无

电子邮箱:weidai@buaa.edu.cn


教育背景

(1) 20079月至20127月🌰,中国科凯发K8数学与系统科学研究院,(理学) 博士,导师:曹道民

(2) 20114月至20124月,加州大学伯克利分校数学系,公派留学访问💆🏻‍♂️,国外导师:Daniel Tataru

(3) 20039月至20076月🧗,山东大学,数学凯发K8👷🏿‍♀️,(理学) 学士


工作简历

(1) 20232月至今🔼,北京凯发K8娱乐平台登录官方网站🏸,凯发娱乐,教授、博士生导师

(2) 20208月至20231月🧏🏻,北京凯发K8娱乐平台登录官方网站🐐,凯发娱乐,副教授、博士生导师

(3) 201810月至201910月👮🏻,LAGAInstitut Galilée📞🥖,Université Sorbonne Paris Nord🏃🏻‍♀️‍➡️,公派访问学者🧔🏽‍♂️,合作教授:Thomas Duyckaerts

(4) 201412月至20207月,北京凯发K8娱乐平台登录官方网站🐈‍⬛,凯发娱乐,讲师、硕士生导师

(5) 201210月至201411月,北京师范大学,凯发娱乐,博士后


科研项目

1. 国家自然科学基金委员会♾,国家级人才科学基金项目,12222102🧔🏼‍♂️,非线性泛函分析,2023-012025-12200万元,在研,主持👱🏻。

2. 国家自然科学基金委员会🎍,面上项目🥷🏼,11971049,半线性椭圆方程和薛定谔方程解的性质研究,2020-012023-1252万元,已结题,主持👉🏽。

3. 国家自然科学基金委员会,青年科学基金项目,11501021🫵,非线性薛定谔方程以及多参数💅🏼、多线性乘子L^p估计的研究,2016-012018-1217万元,已结题,主持🚵🏼。  

4. 中国博士后科学基金会,第54批面上项目 (一等资助)2013M540057👳🏿‍♂️,半线性薛定谔方程以及多参数👈🏼、多线性Fourier乘子的研究,2013-092014-118万元💼,已结题,主持。


代表作论著

[1] Wei Dai; Guolin Qin; Classification of nonnegative classical solutions to third-order equations, Advances in Mathematics, 2018, 328: 822-857.    

[2] Daomin Cao; Wei Dai; Guolin Qin; Super poly-harmonic properties for nonnegative solutions to equations involving higher-order fractional Laplacians and its applications, Trans. Amer. Math. Soc., 2021, 374 (7): 4781-4813.

[3] Wei Dai; Guolin Qin; Liouville type theorems for fractional and higher order H\'{e}non-Hardy type equations via the method of scaling spheres, Int. Math. Res. Not. IMRN, 2023, 2023 (11): 9001-9070.

[4] Wei Dai; Guozhen Lu; L^p estimates for bilinear and multi-parameter Hilbert transforms, Analysis & PDE, 2015, 8 (3): 675-712.

[5] Wei Dai; Guolin Qin; Liouville type theorem for critical order Hénon-Lane-Emden type equations on a half space and its applications, J. Funct. Anal., 2021, 281 (10): Paper No. 109227, 37 pp.

[6] Wei Dai; Zhao Liu; Guolin Qin; Classification of nonnegative solutions to static Schrodinger-Hartree-Maxwell type equations, SIAM J. Math. Anal., 2021, 53 (2): 1379-1410.

[7] Wei Dai; Guolin Qin; Classification of solutions to conformally invariant systems with mixed order and exponentially increasing or nonlocal nonlinearity, SIAM J. Math. Anal., 2023, 55 (3): 2111-2149.

[8] Wenxiong Chen; Wei Dai; Guolin Qin; Liouville type theorems, a priori estimates and existence of solutions for critical and super-critical order Hardy-Hénon type equations in R^n, Math. Z., 2023, 303 (4): Paper No. 104, 36 pp.

[9] Wei Dai; Shaolong Peng; Guolin Qin; Liouville type theorems, a priori estimates and existence of solutions for sub-critical order Lane-Emden-Hardy equations, J. d'Analyse Math., 2022, 146 (2): 673-718.

[10] Wei Dai; Zhao Liu; Classification of nonnegative solutions to static Schrodinger-Hartree and Schrodinger-Maxwell equations with combined nonlinearities, Calc. Var. & Partial Differential Equations, 2019, 58 (4): Paper No. 156, 24 pp.

[11] Wei Dai; Leyun Wu; Uniform a priori estimates for n-th order Lane-Emden system in R^n with $n\geq 3$, to appear in Math. Z., 2024, 25 pp.

[12] Wei Dai; Thomas Duyckaerts; Self-similar solutions of focusing semi-linear wave equations in R^N, J. Evol. Equations, 2021, 21 (4): 4703-4750.

[13] Wei Dai; Guolin Qin; Dan Wu; Direct methods for pseudo-relativistic Schrödinger operators, J. Geom. Anal., 2021, 31 (6): 5555-5618.

[14] Wei Dai; Thomas Duyckaerts; Uniform a priori estimates for positive solutions of higher order Lane-Emden equations in R^n, Publicacions Matematiques, 2021, 65 (1): 319-333.

[15] Wei Dai; Yanqin Fang; Guolin Qin; Classification of positive solutions to fractional order Hartree equations via a direct method of moving planes, J. Differential Equations, 2018, 265 (5): 2044-2063.

[16] Wei Dai; Weihua Yang; Daomin Cao; Continuous dependence of Cauchy problem for nonlinear Schrödinger equation in H^s, J. Differential Equations, 2013, 255 (7): 2018-2064.

[17] Wei Dai; Guozhen Lu; L^p estimates for multi-linear and multi-parameter pseudo-differential operators, Bull. Soc. Math. France, 2015, 143 (3): 567-597.

[18] Wei Dai; Yunyun Hu; Zhao Liu; Sharp reversed Hardy-Littlewood-Sobolev inequality with extended kernel, Studia Math., 2023, 271 (1): 1-38.

[19] Wei Dai; Liouville type theorems for polyharmonic Dirichlet problems of HénonHardy type equations on a half space or a ball, Collect. Math., 2023, 74 (3): 729-751.

[20] Wei Dai; Jingze Fu; On properties of positive solutions to nonlinear tri-harmonic and bi-harmonic equations with negative exponents, Bull. Math. Sci., 2022, 12 (3): Paper No. 2250007, 48 pp.

[21] Wei Dai; Nonexistence of positive solutions to n-th order equations in R^n, Bulletin des Sciences Mathématiques, 2022, 174: Paper No. 103072, 14 pp.

[22] Wei Dai; Guolin Qin; Maximum principles and the method of moving planes for the uniformly elliptic nonlocal Bellman operator and applications, Ann. Mat. Pura Appl., 2021, 200 (3): 1085-1134.

[23] Wei Dai; Guolin Qin; Liouville type theorems for elliptic equations with Dirichlet conditions in exterior domains, J. Differential Equations, 2020, 269 (9): 7231-7252.

[24] Daomin Cao; Wei Dai; Yang Zhang; Existence and symmetry of solutions to 2-D Schrödinger-Newton equations, Dyn. Partial Differ. Equ., 2021, 18 (2): 113-156.

[25] Wei Dai; Zhao Liu; Pengyan Wang; Monotonicity and symmetry of positive solutions to fractional p-Laplacian equation, Commun. Contemp. Math., 2022, 24 (6): Paper No. 2150005, 17 pp.

[26] Daomin Cao; Wei Dai; Classification of nonnegative solutions to a bi-harmonic equation with Hartree type nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A: Math., 2019, 149 (4): 979-994.

[27] Wei Dai; Shaolong Peng; Liouville theorems for nonnegative solutions to Hardy-Hénon type system on a half space, Ann. Funct. Anal., 2022, 13 (1): Paper No. 12, 21 pp.  

[28] Wei Dai; Shaolong Peng; Liouville theorems for nonnegative solutions to static weighted Schrödinger-Hartree-Maxwell type equations with combined nonlinearities, Anal. & Math. Phys., 2021, 11 (2): Paper No. 46, 21 pp.

[29] Wei Dai; Guolin Qin; Liouville theorem for poly-harmonic functions on R^{n}_{+}, Archiv der Mathematik, 2020, 115 (3): 317-327.    

[30] Wei Dai; Guolin Qin; Liouville type theorems for Hardy-Henon equations with concave nonlinearities, Math. Nachr., 2020, 293 (6): 1084-1093.

[31] Wei Dai; Jiahui Huang; Yu Qin; Bo Wang; Yanqin Fang; Regularity and classification of solutions to static Hartree equations involving fractional Laplacians, Discrete Contin. Dyn. Syst. - A, 2019, 39 (3): 1389-1403.    

[32] Wei Dai; Guolin Qin; Yang Zhang; Liouville type theorem for higher order Hénon equations on a half space, Nonlinear Anal. - TMA, 2019, 183: 284-302.  

[33] Wei Dai; Guolin Qin; Classification of positive smooth solutions to third-order PDEs involving fractional Laplacians, Pacific J. Math., 2018, 295 (2): 367-383.    

[34] Wei Dai; Zhao Liu; Guozhen Lu; Liouville type theorems for PDE and IE systems involving fractional Laplacian on a half space, Potential Analysis, 2017, 46 (3): 569-588.

[35] Wei Dai; Shaolong Peng; Liouville theorems of solutions to mixed order Hénon-Hardy type system with exponential nonlinearity, Adv. Nonlinear Stud., 2024, 24 pp, DOI: 10.1515/ans-2023-0109.

[36] Jiao Chen; Wei Dai; Guozhen Lu; L^p boundedness for maximal functions associated with multi-linear pseudo-differential operators, Commun. Pure Appl. Anal., 2017, 16 (3): 883-898.    

[37] Wei Dai; Zhao Liu; Classification of positive solutions to a system of Hardy-Sobolev type equations, Acta Math. Sci. Ser. B (Engl. Ed.), 2017, 37 (5): 1415-1436.    

[38] Wei Dai; Zhao Liu; Guozhen Lu; Hardy-Sobolev type integral systems with Dirichlet boundary conditions in a half space, Commun. Pure Appl. Anal., 2017, 16 (4): 1253-1264.        

[39] Zhao Liu; Wei Dai; A Liouville type theorem for poly-harmonic system with Dirichlet boundary conditions in a half space, Adv. Nonlinear Stud., 2015, 15 (1): 117-134.  

[40] Wei Dai; Some results on the scattering theory for NLS equations in weighted L^2 spaces, Proc. Turin Polytechnic Univ. (in Tashkent), 2012, 114-141.

[41] Wei Dai; Guozhen Lu; Lu Zhang; L^p estimates for multi-parameter and multilinear Fourier multipliers and pseudo-differential operators, Adv. Lect. in Math., Vol. 34, Higher Education Press and International Press, 113-144, 2016.


教学活动

1. 2023春季学期💬〽️,强基班泛函分析🧹,共48课时;20232024春季学期,研究生学科综合课,共4课时。

2. 2021年秋季学期👱‍♂️、2022年春季学期、2022年秋季学期,强基班数学分析I👮‍♀️、IIIII”,共224课时。

1. 2017🪖、2020年秋季学期💴🤚🏽,2018👾🪘、2021年春季学期😗,理科数学分析III”,共384课时。

2. 2020🦹🏽‍♂️、2021🧚🏽、20222023年秋季学期👯‍♀️,研究生实分析👨🏻‍🦽,192课时🧑‍🎓。

3. 2020年秋季学期、2021年春季学期,数学分析原理选讲III🧎🏻‍➡️,共16课时🤘🏽💹。

4. 2019年秋季学期、2020年春季学期,工科数学分析III”,共160课时。

5. 20162017年春季学期🚴🏿‍♂️,讲授泛函分析(华罗庚班)习题课,共96课时。

6. 20152016🚯、2017年秋季学期,20172018春季学期🖖🏻,复变函数与积分变换,共240课时。

7. 2015年春季学期💃🏽,多元微积分64课时。

8. 2014年秋季学期和2015学年春季学期,数学分析I🐥、II(华罗庚班)习题课🪐,共64课时。

9. 参加数学拔尖学生培养模式改革(华罗庚数学实验室)教育部虚拟教研室数学分析一流课程建设项目,加入数学分析课程教学团队✍🏽🕟,参与大类招生模式下理科数学分析的教学与实践大类培养模式下数学分析课程群的教学与实践等教改项目。

10. 担任凯发娱乐2013130923班班主任👩🏽‍🏭、(2016年春季学期)生产实习指导教师及2021级强基班班主任,2022年获评院级优秀班主任🫸🏿。任基础学科拔尖计划2.0导师组组长担任凯发娱乐致真书院学业导师(201710月至201810月)和凯发娱乐20215名本科生专属导师。

11. 教授课程之余,与华罗庚班强基班以及凯发娱乐多名优秀本科生坚持组织研讨班,除一起研读学术论文和专业书籍外,还邀请国内外专家学者前来研讨班给学生授课解惑。与本科生一起探索研究学科前沿问题👨‍🦰,(学生本科在校期间)合作成果在Adv. Math.等权威期刊共发表SCI/ESI论文6篇(ESI高被引1篇)🎑🧲。已指导9本科生毕业设计论文👨🏼‍🔬。指导华罗庚班本科生秦国林毕设论文,被评为凯发娱乐校级优秀毕设论文,论文中包含研究成果已发表在Adv. Math.J. Differential Equ.Pacific J. Math.Math. Nachr.等重要SCI/ESI期刊。指导本科生扶竞择毕设论文🤾‍♀️,被评为院级优秀毕设论文,论文中包含研究成果已发表在Bull. Math. Sci.等重要期刊。

12. 指导硕士研究生3名:彭少龙(2017级👈🏻,已毕业)、扶竞择(2021级,在读),吴尚尔(2023级🦖,在读),指导博士研究生2名:段利秀(2022级🖕🏼,在读)♤,李亚飞(2023级🍆,在读)。扶竞择获国家奖学金、研究生学术论坛一等奖🧺,段利秀获研究生学术论坛一等奖🐎。


所获奖励

1. 荣获凯发娱乐优秀共产党员、凯发娱乐最美数学人,2023

2. 校级优秀教学成果二等奖🍄,凯发娱乐,参与👮🏻‍♀️,2023👩🏽‍🌾。

3. 获得国家级人才科学基金,主持,2022

4. 校级优秀教学成果二等奖,复变函数与积分变换教学改革与课程建设,凯发娱乐,参与👨🏽‍🍳,2020

5. 青年拔尖人才支持计划,凯发娱乐,2019

6. 校级优秀本科毕业设计论文指导教师,凯发娱乐,2018🧑‍💻。


社会工作

1. 基础数学系主任 (20221月至今)

2. 受邀担任如下学术期刊审稿人:J. Funct. Anal.👮🏻🍈、SIAM J. Math. Anal.🚴🏼‍♂️、Math. Z.💦🤏🏿、Sci. China Math.💇🏼‍♀️、Proc. Roy. Soc. Edinburgh Sect. A: Math.🏔、 J. Geom. Anal.Dynamics of PDEsActa Math. SinicaCommun. Math. Sci.⏸、Demonstr. Math.🫄🏿、Bull. Math. Sci.🤷🏻‍♂️、Nonlinear Anal. - TMANonlinear Anal. - RWADisc. Cont. Dyn. Syst. - A🧑🏿‍💻👨🏿‍💻、Applicable Anal.Adv. Nonlinear Anal.Adv. Math. Phys.Commun. Pure Appl. Anal.J. Math. Anal. Appl.Acta Math. ScientiaAdv. Nonlinear Stud.Vietnam J. Math.✌🏻、Complex Var. Elliptic Equ.AIMS Math.Acta Math. Appl. Sin. Engl. Ser.Bound. Value Probl.J. Fixed Point Theory Appl.🆘、J. Pseudo-Differ. Oper. Appl.等。

3. 美国数学会《数学评论》(Mathematical Reviews)评论员 (编号🌦:MR 157395)🧛🏽‍♂️。

4. 受邀为中国大百科全书(第三版)修撰词条“Fourier积分算子为凯发娱乐青年拔尖人才基础前沿系列丛书(物理、数学与空间科学分册)撰写 科普文章非局部算子:从粒子到宇宙🧎‍♀️‍➡️🏚;为机械工业出版社环球科学杂志数学科普书《21世纪的数学》写推荐语。

5. 学术期刊Amer. J. Appl. Math.编委。


推荐链接

1. https://www.researchgate.net/profile/Wei-Dai-15

2. https://www.scholarmate.com/P/weidai

3. https://orcid.org/0000-0003-4248-419X

4. http://shi.buaa.edu.cn/daiyu/zh_CN/index/15834/list/index.htm

5. https://publons.com/researcher/1713547/wei-dai/

6. https://www.scopus.com/authid/detail.uri?authorId=56468628600

7. https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=1027020


快速链接

版权所有 © 2021  凯发娱乐-凯发-凯发平台-北京凯发K8娱乐平台登录官方网站
地址🐈‍⬛:北京市昌平区高教园南三街9号   电话:61716719

凯发娱乐专业提供🫴🏽:凯发娱乐🤷🏻‍♂️、凯发平台凯发登录等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流🐫,凯发娱乐欢迎您。 凯发娱乐官网xml地图
凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐