请升级浏览器版本

你正在使用旧版本浏览器🤰🏼。请升级浏览器以获得更好的体验🤚🏿👡。

学术报告

首页 >> 学术报告 >> 正文

【学术报告及分析、偏微分方程与动力系统讨论班(2024秋季第15讲)】On the Sobolev stability threshold for 3D Navier-Stokes equations with rotation near the Couette flow

发布日期:2025-01-09    点击💁🏽:

应用数学系学术报告

--- 分析☛、偏微分方程与动力系统讨论班(2024季第15)


On the Sobolev stability threshold for 3D Navier-Stokes equations with rotation near the Couette flow

许孝精 (北京师范大学)

时间🦠:2025年110(周) 15:00-16:00

地点:沙河主楼E602

摘要: In this talk, we investigate the dynamic stability of periodic, plane Couette flow in the three-dimensional Navier-Stokes equations with rotation at high Reynolds number $\mathbf{Re}$. Our aim is to determine the stability threshold index on $\mathbf{Re}$: the maximum range of perturbations within which the solution  remains stable. Initially, we examine the linear stability effects of a linearized perturbed system. Comparing our results with those obtained by Bedrossian, Germain, and Masmoudi [Ann.  Math. 185(2): 541–608 (2017)], we observe that mixing effects (which correspond to enhanced dissipation and inviscid damping) arise from Couette flow while Coriolis force acts as a restoring force inducing a dispersion mechanism for inertial waves that cancels out lift-up effects occurred at zero frequency velocity. This dispersion mechanism exhibits favorable algebraic decay properties distinct from those observed in classical 3D Navier-Stokes equations. Consequently, we demonstrate that if initial data satisfies $\left\|u_{\mathrm{in}}\right\|_{H^{\sigma}}<\delta \mathbf{Re}^{-1}$   for any $\sigma>\frac{9}{2}$ and some $\delta=\delta(\sigma)>0$ depending only on $\sigma$, then the solution to the 3D Navier-Stokes equations with rotation is  global in time without transitioning away from Couette flow. In this sense, Coriolis force contributes as a factor enhancing fluid stability by improving its threshold from $\frac{3}{2}$ to 1. This is a joint work with Wenting Huang and Ying Sun.

报告人简介: 许孝精🧗‍♀️,北京师范大学凯发娱乐教授、博士生导师,“京师特聘”拔尖学者🍟,数学建模教育中心执行主任。主要从事流体力学数学理论的研究,给出了一系列Boussinesq方程的适定性理论。曾获“吉林省优秀博士学位论文”🚃,北京市优秀教学成果奖,北师大励耘优秀青年教师奖一等奖,校优秀博士生学位论文指导教师🗾,校优质课程特等奖等。主持了多项国家自然科学基金。 发表学术论文60余篇🏌️‍♂️,被引用1000余次🧛🏽。大部分成果发表在J. Math. Pures Appl., J. Funct. Anal., SIAM J. Math. Anal.👧🏻,IUMJ🧑🏻‍🔧,Nonlinearity等国际知名学术期刊◻️。曾在法国、美国、加拿大👨🏽‍🎓、波兰和香港等地区进行学术访问十余次🕴。

欢迎大家参加!


快速链接

版权所有 © 2021  凯发娱乐-凯发-凯发平台-北京凯发K8娱乐平台登录官方网站
地址🌵:北京市昌平区高教园南三街9号   电话:61716719

凯发娱乐专业提供:凯发娱乐凯发平台凯发登录等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流,凯发娱乐欢迎您。 凯发娱乐官网xml地图
凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐