• 请升级浏览器版本

    你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

    学术报告

    首页 >> 学术报告 >> 正文

    【学术报告】Long-time behaviors of the focusing NLS equation with nonzero boundary conditions at infinity in presence of double pole

    发布日期✶:2023-10-18    点击:

    学术报告

    Long-time behaviors of the focusing NLS equation with nonzero boundary conditions at infinity in presence of double pole

    王灯山  教授

    (北京师范大学)

    报告时间🏃‍♂️‍➡️:20231023日 (星期) 14:30


    报告地点: 沙河校区国实E502


    报告摘要:This talk concerns the long-time behaviors of the focusing NLS equation with two kinds of non-zero boundary conditions at infinity. One kind is the rarefaction problem and the other is step-like initial-value problem with vanishing boundary on one side. The analytic region of the reflection coefficient is found by studying the convergence of the Volterra integral equations. All possible locations of double poles associated with the spectral functions are established and five sectors are classified for each non-zero boundary condition, such as the dumbing sector, trapping sector, trapping/waking sector, transmitting/waking sector and transmitting sector. The long-time asymptotic behaviors for each sector are analyzed by Deift-Zhou nonlinear steepest-descent strategy for Riemann-Hilbert problems.


    报告人简介🧑🏿‍🍼:王灯山,北京师范大学凯发娱乐,教授、博士生导师。主要从事可积系统和渐近分析方面的研究,在Analysis & PDE, Physical Review Letters, J. Differential Equations, J. Nonlinear Science Physica D等国际期刊发表学术论文90余篇𓀖,主持国家自然科学基金面上项目等国家级和省部级项目10余项🌇💁,曾获得茅以升北京青年科技奖,并参与获得北京市科学技术奖一等奖。入选北京市科技新星计划➾、北京市高创计划青年拔尖人才🫸🏿、北京市长城学者计划以及爱思唯尔2020-2022年中国高被引学者。

     

     

    邀请人: 王振

    欢迎大家参加👳‍♂️!

     

    快速链接

    版权所有 © 2021  凯发娱乐-凯发-凯发平台-北京凯发K8娱乐平台登录官方网站
    地址𓀌🐎:北京市昌平区高教园南三街9号   电话🧛🏽:61716719

    凯发娱乐专业提供:凯发娱乐🧓🏼、凯发平台☛、凯发登录等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流⛹🏼‍♂️,凯发娱乐欢迎您。 凯发娱乐官网xml地图
    凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐